

The Stability Of Fault Systems In The South Shore Of The

St. Lawrence Lowlands Of Québec Implications For Shale Gas Development

John Brodylo, Jean-Yves Chatellier, Guillaume Matton & Michel Rheault Copyright 2011, Society of Petroleum Engineers

Outline

- Majority of Québec Utica shale gas exploration in south shore area of St. Lawrence Lowlands
- Natural and man-made earthquakes in south shore
- Tectonic domains, in-situ stress and fault styles
- Fracture stimulation containment within shale gas target
- Hydrofracturing Utica very unlikely to damage surface structures or shallow aquifers

Study Area

Earthquake

- A sudden release of energy in the earth's crust or upper mantle as a result of fault slip
- Destructive at magnitudes of 5 and above
- Minor earthquakes magnitude 2 to 5
- Micro-earthquake is a very low intensity earthquake generally magnitude 2 or less

Earthquake Magnitude Comparison

Juesterre

Southern Québec Earthquakes

1 viesi

<u>Comparison of</u>

Luesterre

Induced Seismic Events

Questerre

Induced Seismic in Québec

<u>Risk?</u>

The Earth Sciences Division of the U.S. Department of Energy's Lawrence Berkeley National Laboratory has studied induced seismicity relating to oil and gas activity and to date <u>hydraulic fracturing has</u> <u>resulted in no known surface earthquakes</u> <u>felt by man</u>

Update: Blackpool U.K. 2.3 M earthquake attributed to fluid injection <u>following</u> hydraulic fracturing. Felt at surface because of shallow focal depth, very unusual circumstances, no damage to building or aquifers

Stratigraphy

Queenston/Lorraine

Sandstone, siltstone and shale

Utica Shale Gas target

Quartz/carbonate organic shale

<u>Potsdam</u>

Regional seismic reflector

Ordovician	Upper	Queenston	H = H Z
		Lorraine	
	Middle	Utica	
		Trenton- Black River	*
		Chazy	
	Lower	Beekmantown	*
Cambrian		Potsdam	\Box
РС		Grenville	* * * * * * * * * * * *

Questerre

3 Major Tectonic Domains

Image Modified from: TRIANGLE ZONES IN ACCRETIONARY WEDGES: EXAMPLES FROM THE QUÉBEC APPALACHIANS AND PHYSICAL MODELING Konstantinovskaya et al, AAPG Poster, 2010

Borehole Breakouts, Fractures and In-situ Stresses

Autochthonous Domain

- Tensional passive margin Normal faulting
- Result of opening of the lapetus Sea
- Hydraulic fractures propagate vertically
- 488.3–443.7 *million years* old
- Fractures in direction of SHmax = 38 degrees

Disturbed Domain

Wrenching

- Bore hole break outs in direction of Shmin = 315 degrees
- Drilling induced fractures in direction of SHmax = 53 degrees

Fault Slip

Coulomb Stress = $\tau_{\beta} + \mu(\sigma_n + P)$

 τ_{β} = shear stress P = pore pressure

 μ = coefficient of friction

 $\sigma_n = normal stress$

Questerre Stress Affects on Completions

<u>Hydraulic Fracture</u> <u>Height Containment</u>

- Contrasts in fracture toughness form barriers
 - High Young's modulus (Y)=Brittle=low toughness
- Low Young's modulus=Ductile=high toughness
- Frac target a brittle zone with low toughness between ductile zones
- High toughness ductile zones are barriers
 - Thrust fault are barriers

SURFACE

Horizontal Shale Gas Well with Micro-seismic Events

• Minimal vertical height growth

•Formations above and below zone likely acting as barriers

 No communication or propagation to shallow aquifers.

Surface Lineament Analysis

South Shore Shale Gas Exploration Area (Study Area)

There are a total of 14 minor > M2.5 earthquakes recorded in the South Shore Shale Gas exploration Area

Inset Map

Summary

- South shore shale gas exploration region is in stress relaxed state and less prone to fault reactivation
- No correspondance between natural and man-made earthquakes and shallow faults in study area
- In-situ stress, rock toughness, and thrust faults all act as barriers to vertical propagation of fractures and faults
- Fracture stimulations are contained within shale gas target
- Hydrofracturing is very unlikely to cause damage to shallow aquifers or surface structures

Acknowledgements

Michael Binnion Questerre Energy Corporation Marianne Molgat Talisman Energy Inc Geoff Rait, - IEX Structural Geologist, Talisman Energy Scott McLellan, - IEX Geophysicist, Talisman Energy Heather Davey Exploration Specialist Geology

